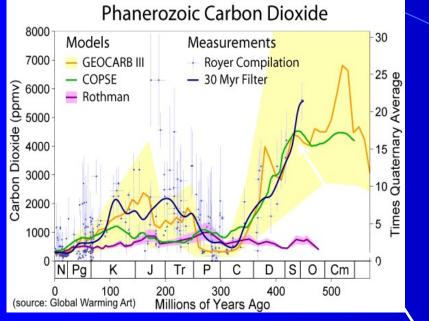
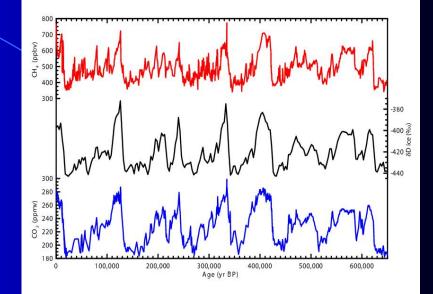
Carbon dioxide, Alkalinity and pH

OCN 633, Fall 2013 Eric Heinen De Carlo


Why is it important to understand the CO₂ system?

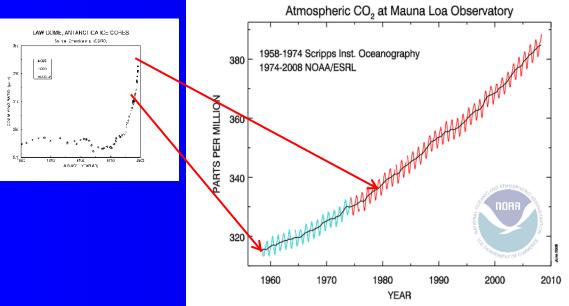
- CO₂ is the raw material for organic matter
- CO₂ affects/controls the pH of the oceans
- CO₂ controls the fraction of inbound radiation that remains trapped in the atmosphere -> controls planetary climate (e.g., Venus, runaway greenhouse effect)
- Distribution of CO₂ species affects preservation of CaCO₃ in the water column and on sea floor


Current Status of CO₂

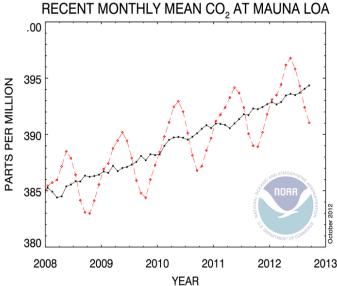
- There is ~53X more CO₂ in the ocean than in the atmosphere
- Humans currently add considerably to the CO₂ inventory of the atmosphere
- CO₂ input is mainly through oxidation of "buried" organic matter (i.e., oil and coal) with some additional fraction from "land use" changes and cement production

Geologic CO₂ records

Berner and Kothavala 2001; Bergmann et al. 2004; Rothman, 2001, Royer et al., 2004

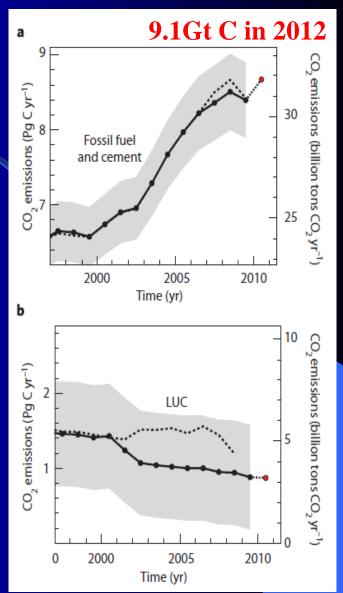

Modified after Siegenthaler et al., 2005 and Spahni et al. 2005

Historically pCO_2 was **much higher** (e.g., in the early Phanerozoic) but development of *Cooksonia* and other vascular plants in the Silurian ~425 Mya caused large decreases in the atmospheric concentration)


BUT OVER THE LAST ~1 Ma (at least until ~1850) pCO₂ ranged only from ~180 to ~280 ppmv

The Anthropocene... a new world!

Recent data: Aug 2013 = 395 ppm Aug 2012 = 392 ppm Aug 2011 = 390 ppm Sept 2003 = 373 ppm at Mauna Loa obsy.



The concentration of CO_2 at Mauna Loa in early 2012 peaked at ~397 ppmv (for an annualized average ~395ppmv).

This is more than 100 ppm higher than during recent interglacial cycle peaks!

CO2 Emissions Globally, fossil fuel burning released ~32 Pg CO2/yr in 2012 (fairly large uncertainty) Land use change added ~3 Pg/yr This CO2 is partitioned between global reservoirs: atmosphere, land, and ocean

- Good news: Partitioning reduces atm.CO₂ contents, tempering the greenhouse effect and global warming
- Bad news: Invasion of CO₂ into the ocean is causes acidification, and will continue as emissions increase over the next century (but there is some good news on LUC)

Friedlingstein et al. (2010) Nature Geosciences

Trends and Changes in CO₂ Emissions

Since 1750 roughly >400 Pg of carbon have been released to the atmosphere by human activity. Half of that since mid-1970's.

- CO₂ emissions increased about 1% per year in 1990's but grew ~3.4% per year from 2000-2008
- Emissions in 2009 dropped /global economic slump (but less than expected) but were still the 2nd highest in human history (30.8 X 10⁹ tons/yr) to date...
- Large regional differences: Europe, Japan and N. America had the largest decreases in emissions (-6.9% US to -11.8% Japan) in 2009
- Emerging economies had increases (e.g., China, India, Korea)
 Data for 2008+ from Friedlingstein et al., Nature Geosciences (2010)

Distribution of CO₂

CO₂ emissions are partitioned between reservoirs:

Atmosphere	~45%
Land	~29%
Ocean	~26%

Note: There is ~53X more C in the ocean (as DIC, DOC, POC) than in the atmosphere (as CO_2)

When pCO_2 (atm) was $< pCO_2$ (oce)

gas transfer was from the ocean to the atmosphere

Currently atmospheric pCO_2 exceeds oceanic pCO_2 in many regions of the open ocean

Currently the open ocean is largely a SINK of CO₂ Conditions in the coastal ocean vary...

Current Status of CO₂ (cont.)

- If added CO₂ remains in atmosphere →
 greenhouse effect will be greater than if input is to a different reservoir (e.g., biosphere, oceans)
- Greater amounts, however, may be going into the biosphere than previously thought...

The correlation between temperature and atmospheric CO₂ is less than perfect from 1880 to 2080... yet, overall trend is unmistakable

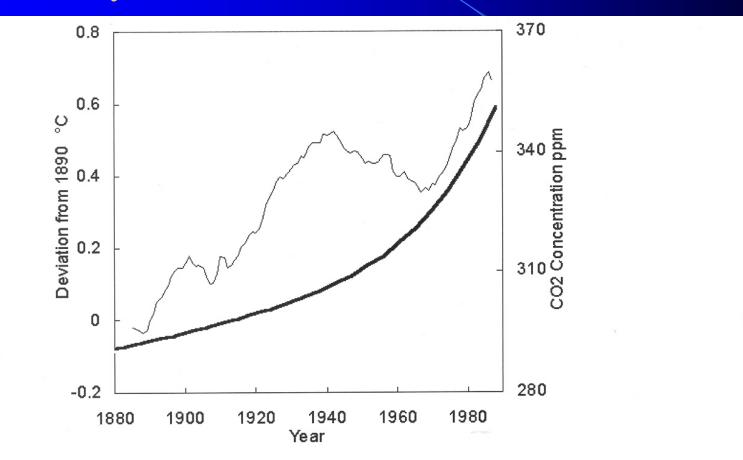
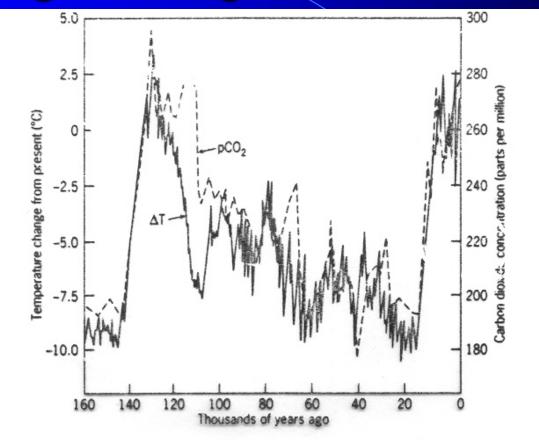



Figure 12: Eleven-year moving average of global surface temperature, as estimated by NASA GISS (23, 33, and 34), plotted as deviation from 1890 (left axis and light line), as compared with atmospheric CO2 (right axis and dark line) (2). Approximately 82% of the increase in CO2 occurred after the temperature maximum in 1940, as is shown in figure 1.

Longer range T correlation

Atmospheric temperature and CO_2 correlate much better on time scales of tens to hundreds of thousands of years

Hydrolysis of CO₂

- CO₂ has multiple possible transformations upon interaction with H₂O
- Forms include: CO_{2(g)}, CO_{2(aq)}, H₂CO₃, HCO₃⁻ and CO₃⁻²
- Species interconvert readily
- Perturbations to one part of CO₂ system
 redistribution of other species
- Reactions not always intuitive

 worth explaining before discussing Alkalinity

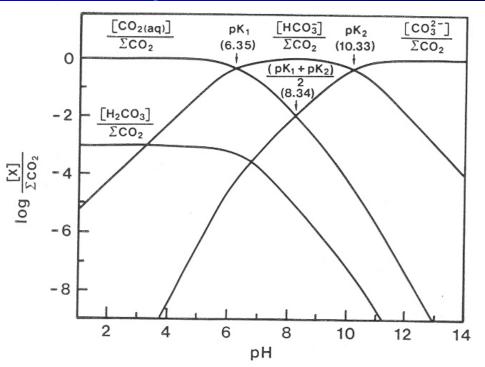
Equations for CO₂ hydrolysis

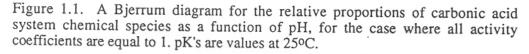
We can describe the equilibrium of gaseous and aqueous CO_2 as: $CO_{2(g)} \leftarrow O_{2(aq)}$ $K_H = [CO_2]/pCO_2$

Subsequent hydration and dissociation reactions are described as: $CO_{2(aq)} + H_2O \iff H_2CO_3$ $K_0 = [H_2CO_3]/[CO_2] = 10^{-1.53}$

 $H_2CO_3 \leftarrow HCO_3^- + H^+$ $K_3 = [HCO_3^-][H^+]/[H_2CO_3] = 10^{-6.0}$

 $HCO_3^- \leftarrow \rightarrow CO_3^{-2} + H^+$ $K_2 = [CO_3^{-2}][H^+]/HCO_3^-] = 10^{-9.1}$


Notice that we have not yet specified a K_1 ...


• addition of H⁺ to a solution of HCO_3^- or CO_3^{-2} will drive each of the reactions backwards to H_2CO_3 or HCO_3^- because:

 $K_2 = [CO_3^{-2}][H^+]/HCO_3^{-1}] = 10^{-9.1}$

- if you increase [H⁺], then [CO₃⁻²]/HCO₃⁻] must decrease if K₂ is to remain constant...
- this can only be achieved (without adding anything to the system) by converting some CO₃⁻² to HCO₃⁻

Species distribution as a f(pH)

From Morse and Mackenzie, Geochemistry of Sedimentary Carbonates, 1990

Note: there is extremely little H_2CO_3 in SW because at the pH of SW it ionizes nearly completely

Bjerrum Plots

- Where lines cross on Bjerrum plots, concentrations of the relevant species are equal...
- Bjerrum plots use p functions (-log [x])
- Distribution is intuitive if you think in terms of pK's
- Note that values in prior diagram are for DI water at 25°C... NOT SEAWATER (see Stumm and Morgan, 1981, p177 for SW values)
- pK values depend on temperature and ionic strength
- at higher pH, the ability of a solution to absorb H⁺ is greater because HCO₃⁻ is driven to CO₃⁻²

Total CO₂ (DIC, C_T) Total CO₂ = CO_{2(aq)} + H₂CO₃ + HCO₃⁻ + CO₃⁻²

• at SW pH, >99% of CO₂ species are HCO_3^- and CO_3^{-2} (and most of that is HCO_3^-) so can simplify

Total $CO_2 \approx HCO_3^- + CO_3^{-2}$

this is also known as total DIC or C_T
 relevant equilibria can be combined into a series of equations that allow us to relate the activity of any of the parameters...

Total CO_2 (2)

 $\{CO_2\} = pCO_2 K_H$

• the equation involving H₂CO₃ is usually eliminated by combining the solvation and first ionization, hence:

 $CO_{2(aq)} + H_2O \leftarrow HCO_3^- + H^+ \qquad K_1 = \{HCO_3^-\}\{H^+\}/\{CO_2\}$

 $\{HCO_3^-\} = K_1 K_H pCO_2 / \{H^+\}$

• H₂O has unit activity (except at very high ionic strength) and is excluded from the equations

 $\{CO_3^{-2}\} = K_2 K_1 K_H pCO_2 / \{H^+\}^2$

Total CO_2 (3)

 we replace thermodynamic activities with concentrations by using activity coefficients.

• this leads to another set of equations...

 $[CO_{2}] = pCO_{2} K_{H} / \gamma_{(CO_{2})}$ [HCO_{3}] = K_{1} K_{H} pCO_{2} / {H^{+}} \gamma_{(HCO_{3}]} [CO_{3}] = K_{2} K_{1} K_{H} pCO_{2} / {H^{+}}^{2} \gamma_{(CO_{3}]}

These relationships allow us to determine concentrations of each of the species in terms of only the pH and the pCO₂ of the solution

Total CO_2 (4)

• At the surface of the ocean (mixed layer), the pCO₂ should be equal to that of the atmosphere (assuming equilibrium between the two reservoirs... but this is often not the case)

 Any seawater sample collected within the mixed layer should have the same in-situ pCO₂

Total CO_2 (5)

 Examine concept of total CO₂ again...which we refer to as Total Inorganic Carbon (TIC)

Total $CO_2 = [CO_{2(aq)}] + [H_2CO_3] + [HCO_3^{-1}] + [CO_3^{-2}]$

But HCO₃⁻ + CO₃⁻² account for >99% of the total CO₂ so we approximate to...

Total $CO_2 = [HCO_3^{-1}] + [CO_3^{-2}]$

Total CO_2 (6)

In seawater measurable carbonate parameters are:

Total CO₂, pCO₂, pH (and Total Alk)

 We can use the equations developed earlier to susbtitute for HCO₃⁻ and CO₃⁻²

Total $CO_2(7)$

Total $CO_2 = K_1 K_H p CO_2 / \{H^+\} \gamma_{(HCO_3^-)}$ + $K_2 K_1 K_H p CO_2 / \{H^+\}^2 \gamma_{(CO_3^-2)}$

 Thus, to determine the total CO₂ system in seawater all we need is pH and pCO₂

 But these are not necessarily the best parameters to use because small errors in these lead to larger errors in C_T and A_T

Seawater pH

- the pH of seawater varies only between about 7.5 and 8.4 (i.e., slightly alkaline)
 over geological time pH is thought to be controlled by water/mineral equilibria
 over shorter time scales (10⁴ to 10⁵ yrs), however, the CO₂ system (its shifting
 - equilibria) regulates seawater pH

Alkalinity

• What is it and why do we care?

 Alkalinity can be defined in a variety of ways but it fundamentally begins with charge balance between major seawater cations and anions

Different definitions can be applied to various situations...

Definitions of Alkalinity (1) The buffer capacity of seawater

- Total Alkalinity (TA) represents ability of seawater to resist pH change upon addition of acid.
- Concept of "buffer" from chemistry: substance that resists pH change upon addition of acid or base
- For seawater we focus on ability to absorb H⁺

Definitions of Alkalinity (2)

 HISTORICAL DEFINITION:
 Number of equivalents of strong acid needed to bring 1L of seawater to a given pH (formation of H₂CO₃ from CO₃⁻²)

Definitions of Alkalinity (3)

• A MORE RIGOROUS DEFINITION: alkalinity of a solution is the excess of the bases (proton acceptors) over the acids (proton donors)

 \rightarrow this is the concentration of negative charge capable of reacting with added H⁺

Bases in seawater

 Bases in seawater that accept protons carbonate species boric acid species hydroxide ion

Define alkalinity on basis of above species

 Calculate alkalinity by subtracting protons and other acids from the sum of bases of weak acids **Alkalinity titrations** TA= 2[CO₃⁻²] + [HCO₃⁻] + [H₂BO₃⁻] + 2[HBO₃⁻²] + 3[BO₃⁻³] + [OH⁻] - [H⁺] +[mystery organic H⁺acceptors]

• End point of alkalinity is when: $[H^+] =$ $2[CO_3^{-2}] + [HCO_3^{-1}] + [H_2BO_3] + 2[HBO_3^{-2}] +$ $3[BO_3^{-3}] + [OH^{-1}] + [mystery organic H^+acceptors]$

• TA usually reported in meq/L or meq/kg

Alkalinity titrations (2)

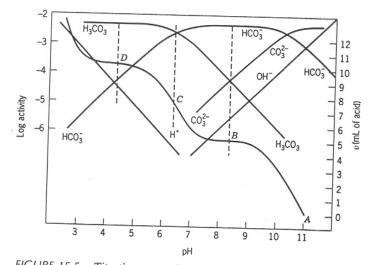


FIGURE 15.5. Titration curve (heavy line ABCD) for 5 mM Na₂CO₃ with acid. Also shown is the concurrent DIC speciation, with concentrations given as the log of their ion activities. B is the carbonate end point, A and C are regions of strong buffering, and D is the bicarbonate end point.

carbonate species control pH near their pK's because they buffer the solution upon addition of acid • other bases (NH₃, $Si(OH)_{3}^{-}, PO_{4}^{3-}$ also contribute to TA but are much less abundant

TA is an important property affected by chemical and biological processes

- Because HCO₃⁻ and CO₃⁻² are major anions of weak acids in seawater, any changes in total positive charge can cause shifts in their relative abundances
- Precipitation of CaCO₃ decreases TA
- TA is then a measure of the extent of calcification and other processes involving CO₂ (with caveats)
- Photosynthesis/respiration of biological communities changes DIC but not TA (again with caveats)
- Can calculate DIC from TA and pH

Carbonate Alkalinity

 $CA = 2[CO_3^{-2}] + [HCO_3^{-1}]$

• CA is main part of TA

- Typically, HCO₃⁻² and CO₃⁻² are present at ~1000X other proton acceptors
- Hence: CA nearly equals TA

Charge Balance Alkalinity

Sum of cationic charges- Sum of anionic charges
Ratio of HCO₃⁻ and CO₃⁻² can adjust to maintain charge balance, but also adjusts with pH

 Shortfall of anions in Table 15.2 is made up by HCO₃⁻ and CO₃⁻²

Positive			Negative		
Cation	Mass (mol/m ³)	Charge (mol/m³)	Anion	Mass (mol/m³)	Charge (mol/m³)
Na ⁺	470	470	Cl-	547	547
K+	10	10	SO ₄ ²⁻	28	56
Mg ²⁺	53	106	Br-	1	1
Mg ²⁺ Ca ²⁺	10	20	Σ		604
Σ		606	$HCO_{3}^{-} + CO_{3}^{2-}$		2
			Σ'		606

Source: From Chemical Oceanography, W. S. Broecker, copyright © 1974 by Harcourt, Brace and Jovanovich, Publishers, Orlando, FL, p. 41. Reprinted by permission.

Calculations

 Any two of the four properties: DIC, TA, pCO₂, pH can be used to calculate the other properties of the marine CO₂-carbonic acid system...

• Which two are measured depends on your "tools"

 Use of DIC and TA generally provides best constraint on system and improves accuracy of calculations

Equations for calculations

Combine equations for DIC and TA to derive:

 $[HCO_3^-] = 2[DIC] - [TA]$

by reversing the substitution scheme we get...

 $[CO_3^{-2}] = [TA] - [DIC]$

 We can therefore estimate the variations in carbonate or bicarbonate ion by measuring DIC and TA (or pH and pCO₂)

Distribution of CO₂ and Alk.

- Alkalinity is a conservative property in seawater (but not on coral reefs) because it is calculated as the difference between two conservative properties
- GEOSECS data from Atlantic show that, although alk. is generally conservative, there are some distinctive trends in its relationship with SAL (water masses)

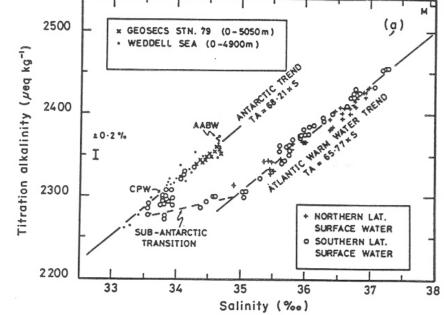


Figure 8.3 The alkalinity-salinity relationship for the Atlantic Ocean (from Campbell 1983, after Takahasi *et al.* 1980). Data are from GEOSECS stations (40°N-60°S) for water depths less than 50 m.

What processes affect Alk?

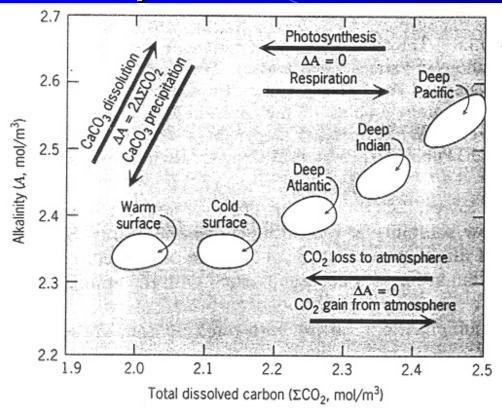


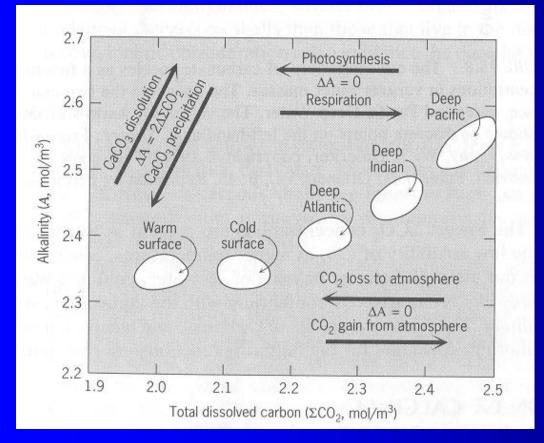
FIGURE 15.7. Relationship between the total dissolved inorganic carbon content and the alkalinity of waters from various parts of the ocean. The arrows indicate the effects of various processes occurring within the sea. Source: From Chemical Oceanography, W. S. Broecker, copyright © 1974 by Harcourt, Brace and Jovanovich Publishers, Orlando, FL, pp. 14–15. Reprinted by permission.

Equilibrium with atmosphere

- At surface ocean equilibrium (should) exist between atmosphere and surface waters
- decreasing CO₂ in seawater through photosynthesis will cause increase in pH
- loss of CO₂ to atmosphere from upwelled cold, high pCO₂ water has same effect
- This is because we take protons out of system when they are used to make CO₂ from HCO₃⁻
- Yet, the TA does not change because the decrease in pCO₂ and loss of DIC does not affect the components of TA (same + and charges are present)

Calcification

- Removal of CO₂ from surface ocean to produce organic matter often also removes CaCO₃ to form shells
- Hence, calcification alters both alkalinity and the CO₂ system
- because calcification removes Ca²⁺ and, because alkalinity is charge dependent, removal of + charges causes reduction of TA
- Amount of TA reduced by calcification is 2X the effect on carbon content because of charge removal


De-Calcification

- Dissolution of CaCO₃ in deep water will be discussed in OCN 623 lectures...
- BUT... remineralization of organic matter produces CO₂ that reacts with CO₃⁻²

$CO_2 + CO_3^{-2} + H_2O \leftarrow \rightarrow 2HCO_3^{-2}$

 in the deep ocean, the decrease in [CO₃-²] from this reaction has a marked effect on CaCO₃ solubility

$CaCO_{3} \bigstar \Rightarrow Ca^{2+} + CO_{3}^{=}$ $CH_{2}O + O_{2} \bigstar \Rightarrow CO_{2} + H_{2}O$ $CO_{2} + CO_{3}^{=} + H_{2}O \bigstar 2HCO_{3}^{-}$

DISSOLUTION CHANGE IN DIC & ALKALINITY REMIN. of O.M. -> NO CHANGE IN ALKALINITY **BUT INCREASES** DIC (unless it is by sulfate reduction

Geographical Distribution of CO₂ Parameters

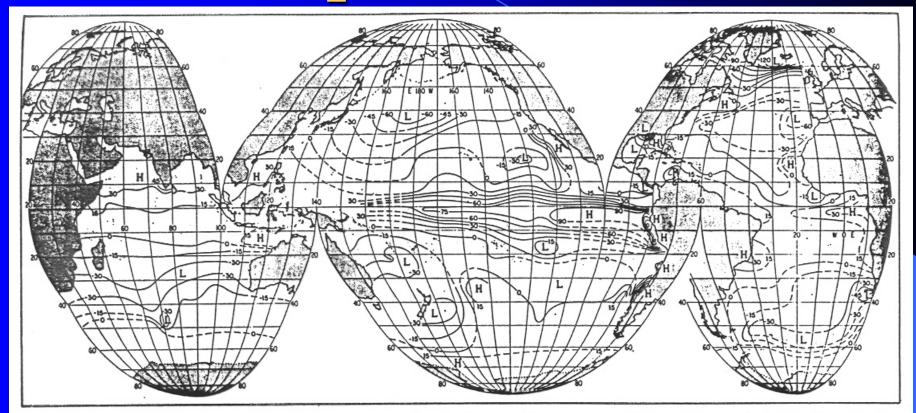


Figure 8.4 The distribution of P_{CO_2} in the World Ocean expressed as the departure in ppm from equilibrium with atmospheric CO₂ (from Keeling 1968). Most data represent summer conditions. The distribution shows a number of highs (H; positive values which imply evasion of CO₂ from the ocean to the air) and lows (L; negative values which imply invasion of CO₂ from the atmosphere to the ocean). More recently, other authors have presented data on the distribution of the sea/air CO₂ partial pressure difference (ΔP_{CO_2}). Positive values indicate that the ocean is a source of CO₂, and include the equatorial waters of the Pacific and the Atlantic. These areas are strong CO₂ sources as a result of the upwelling of deep CO₂-rich waters and surface warming; a combined effect which overcomes the P_{CO2} lowering caused by photosynthesis, although the 'source' can disappear in the equatorial Pacific during El Niño events. Negative values indicate that the ocean is a sink for CO₂, and include the northern North Atlantic and the Southern Ocean which act as sinks due to the combined effects of water cooling and photosynthesis (see, e.g., Takahashi 1989; Oceanus 32 (No. 2), 22-29).

Geographical Distribution of CO₂ Parameters

Last figure shows departures from atm. values

- High values at equator are from upwelling and subsequent gas evasion to atmosphere
- Low values → high bioproductivity
- Low values where cooling of ocean increases solubility of gas and causes gas infusion to surface ocean

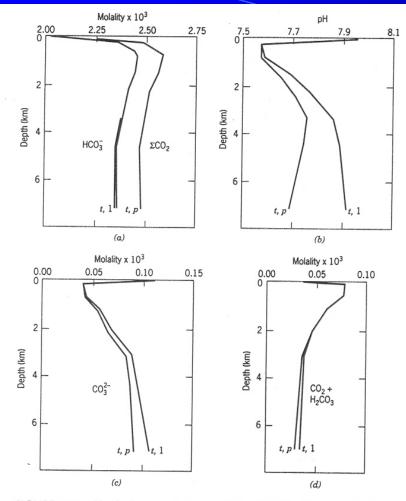


FIGURE 15.6. Vertical concentration profiles of (a) bicarbonate and ΣCO_2 , (b) pH (c) carbonate, and (d) carbon dioxide + carbonic acid concentrations. Curves labe t,p have been corrected for the effects of in situ temperature and pressure on equilibrium speciation. Curves labeled t,1 have been corrected for the in situ temperature effect, but not for that caused by pressure. Source: From C. Culbersc and R. M. Pytkowicz, reprinted with permission from Limnology and Oceanograp vol. 13, p. 414, copyright © 1968 by the American Society of Limnology and Oceanography, Seattle, WA.

Vertical Profiles

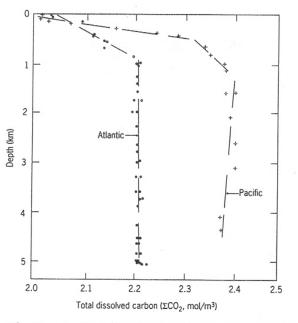


FIGURE 15.4. Variation of total dissolved inorganic carbon concentrations with depth in the Atlantic (36°N 68°W) and in the Pacific (28°N 122°W). Source: From Chemical Oceanography, W. S. Broecker, copyright © 1974 by Harcourt, Brace and Jovanovich, Publishers, Orlando, FL, p. 39. Data from Dr. R. Weiss, Scripps Institute of Oceanography, La Jolla, CA. Reprinted by permission.

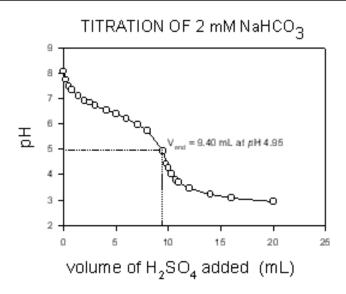
Laboratory Definition of Alk.

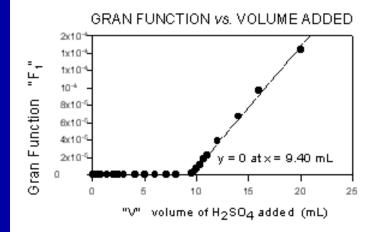
• The titration alkalinity is defined as the number of equivalents of strong acid needed to titrate one kilogram of seawater to the HCO_3^- end point (Edmond, 1970)

Gran Titrations

- Involves stepwise addition of HCl in the pH range 3.7-3.0
- From data, F values are calculated (correspond to the increase in H+ after the 2^{nd} equivalence point of H₂CO₃)
- A linear relationship is assumed and a regression line is used to determine the volume of acid that would correspond to the 2nd equivalence point
- Alk is then calculated from the amount of acid needed to reach the 2nd equivalence point and the actual volume of solution titrated

Gran Titrations II


- Gran titrations are tedious... require lots of time between sequential additions of acid
- Computer controlled autotitrators are really helpful, especially in dispensing small volumes of titrant
- Computer adds HCl until pH drops below 3.7, then records pH and volume of acid added
- Computer records mV and (total) volume for each increment
- From the above... calculate points along the F₂ line


Gran Titrations III

 $\mathbf{F}_2 = (\mathbf{V}_{\text{sample}} + \mathbf{V}_{\text{acid}})\mathbf{10}^{-\text{pH}}/\text{N}$

 V_{sample} = volume of sample (in L) V_{acid} = volume of titrant (in L) N = normality of titrant

- From set of points compute V_2 , the volume of HCl needed to give $F_2 = 0$
- Requires using a regression of F₂ versus volume of acid
- Finally... $TA = V_2$ /sample volume

